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Abstract- In traditional Statistical Process Control (SPC) 
procedure, a standard assumption is that observation from the 
process at different time points are independent random 
variable. However, this independent assumption is not always 
true.. In fact, in the last decade, the time-series approach to 
Statistical Process Control has been a topic of interest of many 
quality scientists. In this paper, an attempt has been made to 
highlight some of the works in this area and a few models will 
be discussed to analyze the effects of autocorrelation on some 
standard control charts techniques. 
 
Index Terms—Autocorrelation, Dependent observation,      
                         EWMA control chart, SPC 
 

I. INTRODUCTION 
  Most of the industrial processes often have complex 
behaviors, when successive units are related to previous one. 
When there are carry over effect from the earlier 
observations, the standard control charts may exhibit an 
increased frequency of false alarms. There is an increased 
likelihood that the data will exhibit autocorrelation in 
systems where the process time is longer than the time 
between sample collections [1]. Autocorrelation results from 
many factors- such as work shift, operator rotations, 
mechanic or technician changes. Sometimes some 
processes, inherently produces autocorrelated data. 
Traditional Shewhart control charts are sensitive to 
autocorrelated data and even at low levels of correlation, a 
significant changes may occur in chart properties including 
short Average Run Length (ARL). Hence in recent times, 
studies on autocorrelation data is an important area for SPC 
users and more attention is being paid by many quality 
scientists to study the behavior of control chart performance 
in presence of autocorrelation. 

II. EFFECT OF AUTO CORRELATION IN PROCESS 
DATA 

When there is significant autocorrelation in the process data, 
it is not advisable to use traditional control chart technique 
without modification. Two general approaches have been 
considered by the scholars of quality  
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control to deal with the auto correlation in recent times, they 
are: 
(a) Traditional control charts are used, but methods used to 

estimate the process parameters and finally the control 
limits are adjusted in order to account for the auto 
correlation. This method is recommended when the 
level of auto correlation is not extremely high. 

(b) A time series model is fitted to the process observations 
and the residuals from this model are used in traditional 
control charts 

 

III. REVIEW OF PAST WORKS ON AUTOCORRELATED 
PROCESS DATA  

Dutta & Phukan [2] reviewed the effect of autocorrelation on 
traditional variable control charts and other modified 
variable control charts like Cumulative Sum Chart 
(CUSUM), Exponentially Weighted Moving Average 
(EWMA) control chart and Multivariate (T2) control chart 
covering the period 1978-2008. They, however, did not 
considered the past works done by the quality scientists in 
the area of autocorrelated attribute control charts. In our 
present study, we shall try to include (as far as possible) most 
of the current research works in these area, both for variable 
(section A) as well as for attribute control charts (section B). 
However, considering the fast growing nature of the topic, 
studies on autocorrelation effects on variable sampling 
intervals (VSI) control charts and non-parametric control 
charts could not be discussed in this section and it will be 
reported in a future study.  

A. Past Works on Variable Control Charts  
Since 2008, many papers have been published by the 
scholars in studying the effect of autocorrelation in variable 
control charts and more are offing. 
Sheu & Lu [3] presents a useful discussion of a method that 
enables the detecting ability of the EWMA control chart to 
be enhanced and shows that when the observations are 
drawn from an AR(1) process with random error, the 
EWMA control chart is far more useful than the Shewhart 
control chart in detecting small shifts. They found that The 
Generalized Weighted Moving Average (GWMA) control 
chart of observations is shown to be superior to the EWMA 
control chart in detecting small shifts in the process mean 
and variance. The GWMA control chart of observations 
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requires less time to detect small process mean and/or 
variance shifts as the level of autocorrelation declines. 
Keoagile [4] considers the problem of monitoring a process 
in which the observations can be represented as a first-order 
autoregressive model following a heavy tailed distribution. 
He propose a chart based on computing the control limits 
using the process mean and the standard error of the least 
absolute deviation for the case when the process quality 
characteristics follows a heavy tailed t-distribution. 
Chang & Wu [5] developed a general and unified approach 
based on the use of discretization and the finite Markov 
chain imbedding technique to investigate the run length 
properties for various control charts when the process 
observations are autocorrelated. Also numerical results are 
presented for illustrative purposes. 
Suriyakat et.al [6] derived an explicit formula for the 
characteristic of EWMA control chart for trend stationary 
exponential AR (1) processes. They compare the results for 
Average Run Length (ARL) obtained from the explicit 
formula with values obtained from the integral equation and 
found that the new results are simple, easy to programming, 
which make it attractive to be used in practice by performers. 
Karaoglan & Bayhan [7] computed ARL performances of 
control charts for peroxide data from two batches, for which 
trend stationary first order autoregressive (trend AR(1) for 
short) model is a representative model. 

B. Autocorrelated Attribute Control Charts  

To our knowledge little attention has been given to the 
development of control charts in the case of correlated 
attribute data. A few work in this area are Deligonul and 
Mergen [8], Bhat and Lal [9]. They assumed a two-state 
Markov chain model for auto correlated attribute data. 
Harvey and Fernandes [10] and Wisnowski and Keats [11] 
shows that correlated count data can be modeled with a 
EWMA approach.. Stimson and Mastrangelo [12] studied 
the monitoring of serially dependent processes with 
attributes data obtained from multistations of production. 
Lai et al. [13] examined control procedures based on the 
conforming unit run length applied to near-zero-defect 
processes in the presence of serial correlation. Lai et al. [14] 
also studied the problem of process monitoring when the 
process is of high quality and measurement values possess a 
certain serial dependence. Nembhard et.al [15] studied a 
demerits control charts (U-chart) for autocorrelated data. 
Their study is related to injection-modeling production lines 
produced by various models of leak proof plastic containers. 
Tang and Cheong [16] proposed a control scheme that is 
effective in detecting changes in fraction nonconforming for 
high yield processes with correlation within each inspection 
group. Shepherd et al. [17] proposed two control chart 
schemes. These control charts are based on a sequence of 

random variables that are used to classify an item as 
conforming or nonconforming under a stationary Markov 
chain model and 100% sequential sampling. 

IV. TIME SERIES MODEL 

To apply control chart for residual, we can modeled quality 
characteristics tX  as follows- 

  
1 1 2 2 3 3 ........t t t t p t p tX X X X X                         (1) 

Here, tX  is a pth order autoregressive or AR (p) Process 

where,   and   (-1 <   <1) are unknown constant and it 

is normally and independently distributed with mean 0 and 
standard deviation . 

 If we modeled 1 1t t tX X                            (2)  

then it is called first order autoregressive AR (1) model; the 
observations tX  from such a model have mean /(1 )  , 

standard deviation 2 1/ 2/(1 )   and the observations 

that are k periods apart ( )t t kX X   have correlation 

coefficient k . Suppose that 


 is an estimate of  , 

obtained from analysis of sample data from the process, and 

tX


is the fitted value of tX . Then the residuals 

  
t te X tX



   

are approximately normally and independently distributed 
with mean zero and constant variance. Conventional control 
charts could now be applied to the sequence of residuals. 
Similarly, the second order autoregressive model AR (2) will 
be 

 1 1 2 2 .t t t tX X X                                   (3)  

Another possibility is to model the dependency through the 
random component t . A simple way to do this is 

  1t t tX                                                  (4) 

This is called a first-order moving average model. In this 
model, the correlation between tX  and 1tX   is 

2
1 /(1 )p      and is zero at all other lags. Thus, the 

correlative structure in tX  only extends backwards one 

time period. Sometimes combinations of autoregressive and 
moving average terms are useful. A first order mixed model 
is 
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 1 1t t t tX X                                        (5) 

We also encounter the first-order integrated moving 
average model 

 1 1t t t tX X                                              (6) 

in some applications. Whereas the previous models are used 
to describe stationary behavior (that is tX  wanders around 

a “fixed” mean), the model in equation (6) describes 
non-stationary behavior (the variable tX  “drifts” as if there 

is no fixed value of the process mean). 

V. CALCULATION OF AUTOCORRELATION  

The autocorrelation coefficient for data that are k time 
period apart rk is defined as 
 

 1

2

1

( )( )
, 0,1, 2,3,..

( )

n k

t t k
t

k n

t
t

X X X X
r k

X X
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






 
 






               (7) 

where n is the total number of observations in the data set. 
 
The standard error at lag k is 

 1/kse n        ;k=1                                           (8) 

        = 
21

1

1/ (1 2 )
k

i
i

n r




     ; k>1                         (9) 

 

VI. EWMA CONTROL CHART 
Roberts introduced exponentially weighted moving average 
chart in 1959 [18] . This chart is popular for the control of 
industrial processes where the individual observations arrive 

one by one. The EWMA,
ty


 is computed sequentially as a 

linear interpolation between the present observation tz  and 

1



ty , the previous EWMA 

   1)1( 



 ttt yzy                                   (10) 

 
Where   is a constant 10   . Hunter [19] has shown 
that for independent and normally distributed data, the 

control limits for the EWMA 
ty



 are given by 
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 where the estimate of the process variability,


 , typically 
is estimated using the same method as for the individual 
control chart. 

VII. ANALYSIS   
To analyze the control chart model in presence of 
autocorrelation, we have studied the finished product of 
Formalin from a chemical factory in Assam. It may be 
mentioned here that formalin product of the chemical 
factory is set as 37 ± 0.5 % weight of formaldehyde gas. If 
the finished Product is below 36.5%, the customers don’t 
accept it. If the finished product is above 37.5%, it is not 
affordable to the management so far its cost benefit margin is 
concerned. To analyze the data, we have collected 268 set of 
raw data of formalin and deal with using statistical process 
control tools. First, we calculate the autocorrelation function 
(ACF) of the formalin (chemical) product data which will 
indicate the presence of the autocorrelation in the data. 
Graph of ACF and PACF are shown in figure 1 and 2 
respectively. 
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Fig.1. Autocorrelation Function (ACF) of Purity of 

Chemical Product (Formalin) 
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Fig. 2. Partial Autocorrelation Function (PACF) of Purity 

of Chemical Product (Formalin) 

From the visual inspection of the figure 1, we can easily 
conclude that there is autocorrelation in the original set of 
data. Also, from the ACF plot fig 1., it is clear that the lag(s) 
is significantly different from zero and the series is not white 
noise i.e the data has auto correlation. 

A. Removing Autocorrelation from the Observed Data 
To achieve an independent, normally distributed data set, 
Montgomery [1] recommends modeling the correlative 
structure and control charting the residuals directly. For the 
formalin data, the predicted purity of formalin (chemical) 
product at period time‘t’ is (from the fig 1) 

1 1 2 2 3 3 4 4t t t t tX X X X X    


                   (12) 

 Only four points from the previous data were used because 
of the high autocorrelation coefficient for lags 1-4 (fig-6.1). 
To determine the parameters of this model multiple linear 
regression can be performed. 
 
 Using Minitab Software, the regression 
parameters 1 , 2 , 3  and 4 are calculated which is given 

below. 
       =11.424 

1 = 0.756 

2 =0.0971 

3 =-0.138 

4 =-0.0116 

To check the model, we show in figure 3, a normal plot of the 
residuals, and in figure 4, a plot of the residuals in time 
order. Both plots indicate that the model fits the data well. 
The ACF and the PACF of the residual provide a further 
check. Ideally, if the model fits well, all autocorrelation 
would have been removed from the data and the residual 
behave like white noise. Figure 5 and 6 show the ACF and 
the PACF for the residual after fitting the AR (4) model to 
the formalin data. Both the ACF and the PACF are 
essentially zero for all lags. 
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Fig. 3. Normal Plot of Residuals after Fitting an AR (4) 

Model to the Formalin Data 
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Fig. 4. Time Series Plot of the Residuals 
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Fig. 5. The ACF of the Residuals after Fitting an AR (4) 

Model to the Formalin Data 

605040302010

1.0
0.8
0.6
0.4
0.2
0.0

-0.2
-0.4
-0.6
-0.8
-1.0

P
ar

tia
l A

ut
oc

or
re

la
tio

n

Lag k

 
Fig. 6. The PACF of the Residuals after Fitting an AR (4) 

Model To the Formalin Data 
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B. EWMA Control Chart for Residual 
In using the inflated limits for the individuals 

control chart, we emphasized the importance of reducing the 
false alarm rate, and making the chart easy to interpret. 
However, this approach desensitizes the chart and will likely 
increase the average run length (ARL) to signal an alarm in 
case of a real change. 

For the current process, we could use an 
individual’s control chart, a cumulative sum (CUSUM) 
chart or an EWMA chart. The residuals are not on a 
meaningful scale. Hence the practical interpretation 
argument for using the individuals control chart no longer 
applies. We therefore suggest using an EWMA chart. 
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Fig. 7. An EWMA of Observations from the Original 

Formalin Data 
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Fig. 8. An EWMA of Observations from the Residual 

Formalin Data 
Using equation (11), the original formalin data is 

plotted for EWMA chart using Minitab 11 version with the 
typical default value  = 0.2. Fig 7 shows an EWMA for 
original formalin data set. We see that the process with this 
chart appears to be out of control. But after removing the 
effect of autocorrelation when we use the EWMA control 
chart for the residual formalin data, the process is found in 
statistical control. (fig.8) 
 

VIII. CONCLUSION 
In modern approach of application of statistical process 

control, the effect of autocorrelation is increasingly 
becoming a fact of life and must not be ignored. In our study, 
we have tried to explain with a chemical data how to detect 
autocorrelation; illustrated it’s consequences for standard 
control chart EWMA chart. Other control chart can be used. 

As demonstrated, modern software packages such as 
MINITAB, make it relatively easy to perform the 
computations needed when dealing with autocorrelated 
processes and using AR time series models.   
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